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The wave functions of  the 18 ground-state light baryons are calculated in the 
quark model. The space wave functions are obtained by means  of  a (confining) 
hyperspherical  harmonic  potential in a nonrelativistic Hamiltonian. The different 
flavors (up, down, strange) are treated as identical particles. 

1. INTRODUCTION 

In this paper we calculate the wave functions of the 18 ground-state 
light baryons, using the quark model with the three original flavors: up, 
down, and strange. The confining potential is taken to be hyperspherical 
harmonic, which allows for a separation between the hyperradial part and 
the hyperangular part of  the space wave function (Sections 3.1-3.3 consider 
the general case of an N-body system; N is then restricted to 3 in Section 
3.4). In Section 2, the flavor, baryon number, color, spin wave functions 
are reviewed, and in Section 3.4 the complete wave functions are defined. 
The employed formalism makes it possible to treat all flavors on the same 
footing, without the need to distinguish them on the basis of mass differences. 

A remark about notation. Superscripts a, b run through the values 1, 
2, 3 (the three Cartesian axes). Subscripts i, j, k run through the values 
1 , 2 , . . . ,  N (the N particles); subscripts u, u', u" run through the 
values 1 , . . . ,  N - 1 .  The three-dimensional antisymmetric symbol is here 
indicated as e ( - , . ,  .); units are such that h = 1; the Kronecker delta 
is sometimes indicated as 8 ( - , .  ). 
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2. THE GROUND-STATE LIGHT BARYONS 

A generic flavor, baryon number, color, spin state for a single quark 
will be designated as 

Ifl, bn, co, s)= [fl)lbn)lco)ls) (1) 

where (a) fl denotes the flavor eigenvalue [available flavors in our model 
are up (up), down (dw), strange (st); orthonormalization: (ftl fl' ) = ~(fl, fl')]; 
(b) bn denotes the baryon number eigenvalue [available baryon numbers 
are +�89 for quarks, -�89 for antiquarks; orthonormalization: (bnlbn ' )=  
6(bn, bn')]; (c) co denotes the color eigenvalue [available colors are red 
(rd), blue (bl), green (gr); orthonormalization: (colco') = ~(co, co')]; (d) s 
denotes the z-spin eigenvalue [available values are + �89 - �89 orthonormaliz- 
ation: (sis') = 6(s, s')]. 

For any one of the 18 ground-state light baryons, we can write the 
flavor, baryon number, color, spin wave function in the following form: 

Igb, S) = IBn -- +1, W) E CF(gb, S)lfl', s'),Jfl', s't)2lfl m, s'")3 (2) 
F 

where 
! t !  Fit F-= (fl',fl",fl'",s, s ,s  ) 

In equation (2), gb stands for the name of the baryon (e.g., A +§ A +, etc.) 
and S indicates the z-spin state ( S = +  3, +�89 -�89 - 3  for the decuplet 
baryons, S = +�89 -�89 for the octet baryons). The singlet of color 

IBn = +1, W) = Ibn = +�89 = +�89 = +�89 

1 x ~  E ~(co', co", co')1co'>11co">21co">3 (3) 
co',co",co" 

is obviously normalized, and represents a (colorless) baryonic state: Bn = +1 
is its baryon number. For antibaryons, gb-->g---b by means of  bn--> _1 in 
equation (3) (and therefore Bn--> -1) .  The Cr(gb,  S) coefficients are chosen 
according to well-known rules, including orthonormalization and symmetry. 
For example, 

I A++, s = +~) = IBn -- +1, W){lup, +�89 + �89 +�89 

IP, S -- +�89 = +1, W)(1/3x/2)[21u p, + �89 + �89 -�89 

+ 2lup, +�89 -�89 +�89 

+ 21dw, - �89 + �89 + �89 

- l up ,  +�89 -�89 +�89 

- l up ,  -�89 + �89 +�89 
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-lup, +�89 + �89 -�89 

- ]up ,  -�89 +�89 +�89 

- Idw,  +�89 + �89189 

- [ d w ,  + �89  +1 

See, for instance, Perkins (1982) or Raspini (1984). The decuplet baryons 
have spin-~, the octet baryons have spin-�89 experimental masses can be 
found in Rosner (1981) as well as in many other books and publications. 

Next, we examine the space wave functions, obtained using a 
(confining) hyperspherical harmonic potential in a nonrelativistic 
Hamiltonian. This section will be more general than needed, in the sense 
that it applies to any N-body (nonrelativistic) hyperspherical harmonic 
state (N---2). At the end, our consideration will be restricted to the ground 
state of the N = 3  case, for use with the 18 baryons. In order to simplify 
notation, we introduce here a compact symbolism for the SU(6) flavor-spin 
wave functions of  the aforementioned baryons. This is done by means of 
the definition [see equation (2)] 

Igb, S) = [Bn = +1, W)l~ S)) (4) 

3. THE HYPERSPHERICAL HARMONIC OSCILLATOR MO D EL 

3.1. Hamiltonian and Center-of-Mass Variables 

In an inertial, Cartesian, orthogonal frame of reference ~(x, y, z), the 
Hamiltonian of  a nonrelativistic N-body isolated system can be written as 

H = E  p~ + V(r#) (5) 
k 2ink 

with 

r/j = r / - r j ,  i , j , k = l , 2 , . . . , N  

The symbols are standard. Here rk = {r~} and Pk = {Pk b} = {- i  O/orb}: a, b = 1, 
2, 3 represent the position and canonical momentum of the particle labeled 
k (mass mk), while V stands for the total internal potential. 

For the identification of the "internal" Hamiltonian, we can make use 
of the well-known transformations (Krajcik and Foldy, 1974; Raspini, 1985): 

Pk = 'fi'k + ~-~ P, M = ~  m k (6) 
M k 

rk = pk + R (7) 
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where the internal center-of-mass (c.m.) variables "~k, Pk are constrained 
as (Krajcik and Foldy, 1974; Raspini, 1985) 

~k = O, ~ mkpk = 0 (8) 
k k 

The total c.m. momentum P=Y, k Pk and the total c.m. position R =  
(Y,k mk rk ) /M  constitute a canonically conjugated pair: 

pa = _ i a / O R  a (9) 

while the other nonvanishing commutators among the c.m. variables are 
(Krajcik and Foldy, 1974; Raspini, 1985) 

[p;,  Irk b] = i a~b(a~k - m k / M )  

By means of the replacements (6)-(8), the 
becomes in the standard form 

with 

(10) 

internal Hamiltonian 

which implies 

The complete H operator is then given by (Krajcik and Foldy, 1974) 

H = P 2 / 2 M  +h (12) 

The space of the 3N coordinates r~ may be conveniently spanned by 
the set of variables R a, rl b , where rl~ are as follows: 

"tlu= P~N, U = 1 , . . . ,  N - 1  (13) 

The ~1~ coordinates have the property of being canonically conjugated to 
the ~ momenta, that is, 

[rl~,a ~ru,]b = i 8abs~, (14) 

a a 
~ru = - i  O/a~Tu 

Clearly, equations (9), (15), and the ~ constraint in (8), 

a 

0r/u 

(15) 

(16) 

2 

h =E ~ + V(p~) (11) 
k 2ink 
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make up a consistent set of prescriptions to express all of  the momenta in 
(12). Furthermore, using equation (13) and the p constraint in (8), we can 
get the p prescriptions 

1 
p,, = I1~, - ~ ~ m,,,'q,,, (17) 

1 
PN-- M ~  mu~lu (18) 

Finally, equation (12) may be written as (Raspini, 1984) 

where 

0 2 

V 2 = ~ OR a OR ~ (20) 

1 1 

0 2 
~ , . , , = 2  o (22) 

v~(~u) = v(p0(~.))  (23) 

The volume element 

can be expressed by 

dv = I ] d r k  (24) 
k 

where it is convenient to set 

f dR = D 3, D ~ + ~  (26) 

3.2. Jaeobi Coordinates and Hyperspherieal  Variables 

For any chosen positive constant ~, we can introduce appropriate 
Jacobi coordinates 

~. = ~ A.~,'qu, (27) 
tt' 
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such that the relative kinetic energy 
2 

=k = _  E S,~,,,,,A,,,,,,, (28) 
~ 2rnk u',u" 

is diagonalized in the following manner 2 (Ballot and Fabre De La Ripelle, 
1980): 

1 
- 2 Su,~,,,A,,,,,,,- E V,,2 (29) 

u',u,, 2a -ff 

0 2 
v~ =~ (30) oG o~:~ 

The H operator is then 

with 

1 2 

\ 2 M  ] \ 2 a  ~. / 
(31) 

u(G) = v~(~(~u)) (32) 
and the volume element (24), (25) may be expressed by 

1AI 3 = Idet(A.,.,,)l 3 = [ (2a)  N-1 det(S~,~,,,)] -3/2 (34) 

Among the "natural"  choices for a, we mention a = M (total mass), and 
a =/~ (reduced mass): 

= �89176 ~/(1-N) (35) 

The latter specification forces the Jacobi transformation to have a unitary 
determinant. Observe, for the calculation of  t~, 

M 
det(Su,uo) - 2N_t(i-ik rnk) (36) 

The hyperspherical variables are related to the Jacobi coordinates by 
the formulas (Ballot and Fabre De La Ripelle, 1980): 

~u 
= (sin 0u cos 4~)~+ (sin G sin 4~.)~+ (cos G)~ (37) 

(~=N ) 
]~u[ = ~ cos ~. 1] sin ~ (38) 

\ w = u + l  

ZFor a chosen a, A is not unique. If  e{ is such that equation (29) is obtained, we have that 
A = B.,{ also gives (29) for the same ~, provided B is an orthogonal matrix. On the other 
hand, the hyperradius ~: of equation (41) is the same for all the A matrices that give (29) for 
a fixed oe. 
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where ~N -~ ~ /2 ,  and 

O~ ~ [0, or]; qS~ ~ [0, 2r 

flu ~ [0, r with ~ -= O; ~: ~ [0, +oe] 

1013 

(39) 

(40) 

The hyperradius ~ is given by (Ballot and Fabre De La Ripelle, 1980) 

, =  ( ~  ~ ) 1 / 2  (41) 

while equation (31) acquires the standard form (Ballot and Fabre De La 
Ripelle, 1980) 

H__ ( l v 2 /  I 1 [02~3N-40   (a)ll 
\ 2 M  ~ 0~: ~:2 j j + U e ( s c ,  12) (42) 

in which 12 are the hyperangular variables 

12={12x: h = 1 , . . . , 3 N - 4 }  

={~t, Ou, 4 ) u : t = 2 , . . . , N - 1 ; u = l , . . . , N - 1 }  (43) 

and U # is the potential expressed in terms of  s e and 12 

U#(~, 12) = U(~u(s c, 12)) (44) 

The operator L2(~'~) is called the "grand angular momentum" and acts upon 
the f~ variables only. Its eigenfunctions in the I~ space are conveniently 
labeled YL(f~) (the "hyperspherical harmonics"), where L is a group of 
3 N - 4  appropriate quantum numbers. A suitable (integer nonnegative) 
linear combination l(L) of these quantum numbers yields the relationship 3 

L2(12) YL(12) = -I(L)[I(L)+ 3 N -  5] YL(12) (45) 

as the relevant eigenvalue equation (Ballot and Fabre De La Ripelle, 1980). 
The volume element (33) can be rewritten through the usual procedure 

dv=dR(l--~13]J(~,12) ] d ~ d ~ )  (46) 

with 

Noticing the property 

J (s  c, 12) = det[0(~u)/0(~:, 12)] (47) 

IJ(~, 12)1 = ~3N-4F([~) (48) 

3Obviously, more than one L group yield the same value of 1, except for the case l(L)= O~ 
which is satisfied by just one ensemble L o (and Y~ is a constant). 
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we obtain 

Raspini 

For a hyperspherical harmonic oscillator 

g(r = )K~: 2, 

with 

This leads to the equation 

d2R 3 N - 4 d R  

dPL= YL(f~)R(~) (55) 

I(L)[I(L)+3N-5] } 
~2 R = 2 a [ g ( r  ~]n  

e = E - p 2 / 2 M  

K > O  

(56) 

(57) 

dv= R(~-~ ~ 3N-4 d f ~ ]  (49) 

and it is convenient to set 

F ( a )  1-I d ~  = d r ( a ) ;  1 3N 4 1~13 ~ - d~ = dv(~) (50) 

The usual normalization of the hyperspherical harmonics yields 

f dv(f~) Y*(Y~) YL,(Y~) = 6EL' (51) 

3.3. The Hyperspherical Harmonic Oscillator 

Next, we examine the eigenvalue problem 

H ~ ( R ,  ~, f~) = Eqr(R, ~:, f~) (52) 

where H is the N-body Hamiltonian [as expressed in equation (42)] and 
E is the energy eigenvalue. The behavior of the center of  mass is clearly 
separated, so that we can consider solutions 

1 
�9 p = ~ - ~  exp(ip- R)~b(~, ~)  (53) 

(p represents the observed eigenvalue of P). Furthermore, if U # is hyper- 
central, 

U#(~, ~ )  = g(~) (54) 

one is allowed to specify the 3 N - 4  hyperangular quantum numbers: 
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The regular eigensolutions of (56) with the harmonic potential (57) are 
well known (Fabre De La Ripelle and Navarro, 1979; Fabre De La Ripelle, 
1984), corresponding to the quantization rules 

( K) ~/2 2n + 3( N-1)  
e. = 2 , n =0,  1 , . . .  (58) 

l(L) even: O<-l(L)<-n i f n e v e n  (59) 

l(L) odd: 1 -< l(L) <-- n if n odd (60) 

The R.t(L)(~) functions have the structure 

R.t(~) = B.t exp(-w2/2)w~Q.l(w), w = (aK)~/4~ (61) 

where Q.~(w) are polynomials of  even powers of w, and B.l are normalization 
constants: 

f dv(~) R*~(~)R,,,~(#) = 3.., (62) 

Finally we can write 

1 
q~v.L = [-D-~ exp(ip. R) ][ YL(f~)][ R.I(L)(r ] (63) 

in which the allowed L groups are constrained by (59) and (60). 
In concluding this subsection, it is worthwhile mentioning that the 

Hamiltonian (31), with the potential (57), is also separable in the Jacobi 
coordinates r Therefore, an alternative complete set of regular eigen- 
solutions (in terms of Hermite polynomials) is also handy. 

3.4. The Three-Body Case; Baryons 

The case N = 2 is clearly trivial. The case N = 3 is simple to treat, but 
still worth some explicit evaluations. If  we start from the 11 variables 
[equation (13)] and wish to obtain the 6 variables [equation (27)], we can 
choose (a  = M, from now on) 

_[, mlrn2 ] 1/2 
61= LM(ml+m2)J ('Ill 2 - '1~ 1) (64) 

62 = -(m1~+3-~2)~/2{ml~m 'q I "~-m2"m ~ (65) 

from which [equation (34)] 

M 3 -3/2 

[AI3 = (ml--~-~fm3) (66) 
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On the other hand, the relations between the p and the ~i variables are 
[equations (17), (18)] 

Pl = - (1 /  M )[ m2"q2 - (m2+ m3)'ll]l] (67) 

P2 = - (1 /  M)[ml'ql - (ml+  m3)~2] (68) 

P3 = - (1 /  M )( ml"ql + m2"q2) (69) 

The hyperspherical transformation (38) can be written as (~'2 = if) 

I~ll = s e sin ~" (70) 

l~2l = s r cos ~" (71) 

and therefore [equation (50)] 

( MS ~3/2~ :5 ds ~ (72) 
dv( ~) = \ mlm2----m3 / 

dr(l)) = sin 2 ff cos 2 ~" sin 01 sin 02 d~ dO 1 dO 2 dcb~ ddp2 (73) 

The hyperradius s c is then calculated as follows [equations (41), (64), (65)]: 

2 1 s ~ =--~[ml(rn2+ms)'q~+rn2(rna+m3)'q~-2mlm2"ql "'q2] (74) 

or [equations (67)-(69)]: 

r 
M2 [rn~m2(pl-p2)2+ m~m3(Pl- p3)2+ rn2m3(p2- p3) 2] (75) 

Finally, the ground state of (63) (which is also obtainable by means of a 
separation in the Jacobi coordinates ~ )  is given by 

*pnLl.=0.,=o = 1 exp(ip. R) rrS/2 

~{Kmlm2m3~3/4 } 
x [ \. --~ } exp[-�89 2] (76) 

8o = 3 ( g / M )  1/2 (77) 

If we assume that the quarks in the 18 baryons are confined by a 
hyperspherical harmonic potential, we can make use of the above descrip- 
tions, at least in the nonrelativistic approximation (and neglecting short- 
range potentials). This allows to write the complete wave function in the 
following way: 

]XI*cm(gb , S)) = [space] ]gb, S) = Inn = +1, W) 

x{(Kmlm2m3.'~ 3/4 �89 S)) j exp[ -  (78) 
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Here, p = 0 has been set, for simplicity (center-of-mass frame). Due to the 
nature of la//(gb, S)), which may contain different flavors, the space wave 
function now operates on the SU(6) wave function according to the rule 

mdfl)i = m(fl)ifl)i (79) 

where m(fl) is the fl "eigenvalue" of the m~ mass "operator" (that is, the 
mass of the quark in l" )i). Note that the mass operators are clearly contained 
in the variables ~u, ~:, and f~ as defined in terms of the position coordinates 
r~. (The "qu variables are free of the masses, and the R variable contains 
masses and positions in a symmetric combination.) 

The developed formalism makes it possible to treat all flavors on the 
same footing. The employed Hamiltonian, in terms of the constituent 
variables, is expressed by (see Sections 3.1-3.3) 

? K H:~2~i+--~mimj(ri-rj)2 (80) 

which is manifestly symmetric in any interchange i~->j. The potential is 
flavor-dependent: for an up-up-s t  baryon, the up-up effective elastic con- 
stant is roughly 70% of the up-st coupling [assuming usual values of the 
quark masses, as in Rosner (1981)]. 
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